lunedì 13 giugno 2016

Verso un altro Universo attraverso i buchi neri.

buco_nero

L’ipotesi è stata, ancora un volta, avanzata da Stephen Hawking, il quale ha inoltre affermato che ciò che entra nei buchi neri può anche salvarsi e non scomparire del tutto.

I buchi neri sono presenti nel cuore di quasi tutte le galassie dell'Universo. Essi potrebbero essere la porta verso altri universi. Così sostiene l'ipotesi di Stephen Hawking.

I buchi neri sono ancora oggi uno dei grandi misteri del nostro Universo. Anche se sono entrati nell’immaginario comune come grandi lavandini che inghiottono tutto ciò che passa loro vicino, riservano ancora molti enigmi che devono essere spiegati dagli astrofisici.

Una delle domande a cui si attende una risposta è quella che riguarda cosa succede a ciò che entra nel buco nero. Secondo la Relatività Generale ciò che precipita al suo interno verrebbe inesorabilmente distrutto, ma l’ipotesi cozza con quanto sostiene la meccanica quantistica, secondo la quale, semplificando al massimo, ciò non è possibile.

La soluzione l’avrebbe trovata Stephen Hawking, il celebre astrofisico ed esposta per sommi capi ad una conferenza tenutasi al Kth Royal Institute of Technology di Stoccolma (vedi video a fine pagina). Hawkinh sostiene che ciò che viene risucchiato da un buco nero rimarrebbe intrappolato lungo l’”orizzonte degli eventi”, quella sfera che circonda un buco nero che lo delimita dal resto dell’Universo e lì rimanere in una specie di “ologramma”.

Stephen Hawking al Kth Royal Institute of Technology di Stoccolma. | KTH 
LA SCAPPATOIA. Così intrappolata, la materia e l’energia possono poi ritornare nel nostro Universo sotto forma di radiazione di Hawking, ossia sotto forma di “radiazioni quantistiche”, o finire in un altro Universo.

Purtroppo non c’è da sperare però, che si possa ritornare da un buco nero tali e quali si è entrati.  Spiega Hawking: «L'informazione delle particelle entranti viene restituita, ma in una forma caotica e non più utilizzabile. E così l'informazione, per qualsiasi scopo pratico, si perde».

Nel film di fantascienza Interstellar si ipotizza la possibilità di sopravvivere al viaggio in un buco nero. Oggi Stephen Hawking lo sostiene con una sua ipotesi
I buchi neri dunque, non sarebbero degli inghiottitoi senza possibilità di ritorno, quest’ultimo sarebbe possibile anche se non più nella forma in cui si è entrati. Hawking ha aggiunto scherzosamente: «Se sentite di essere in un buco nero, non mollate. Vi è una via d’uscita».

Che abbia ragione Christopher Nolan, il regista di Interstellar? In un buco nero si può entrare e uscire in un altro Universo a più dimensioni…



domenica 12 giugno 2016

La Via Lattea quasi 'cancellata' dal cielo dell'Italia.

La Via Lattea è diventata quasi 'invisibile' da gran parte dell'Italia a causa dell'inquinamento luminoso (fonte: ESO/S. Guisard)


Per l'inquinamento luminoso.


E' l'Italia il Paese del G20 con il piu' alto livello di inquinamento luminoso: il problema e' tanto diffuso da impedire al 77% degli italiani di ammirare lo straordinario spettacolo notturno della Via Lattea. Addirittura un quarto della popolazione vive sotto cieli 'abbaglianti', talmente inondati da luce artificiale da non permettere agli occhi di attivare la modalita' di visione notturna. 

E' quanto emerge dall'ultimo Atlante mondiale dell'inquinamento luminoso, pubblicato sulla rivista Science Advances da un gruppo internazionale di ricerca coordinato dall'Italia, con l'Istituto di Scienza e Tecnologia dell'inquinamento luminoso (Istil), un'organizzazione no-profit fatta da volontari.

''Essere al primo posto nella classifica dei Paesi piu' inquinati dovrebbe far riflettere coloro che, specialmente a livello politico, continuano ad opporsi ad una limitazione dell'abuso dell'illuminazione artificiale notturna'', commenta il fisico Fabio Falchi dell'Istil, che ha portato avanti lo studio in collaborazione con l'Agenzia statunitense per l'atmosfera e gli oceani (Noaa), l'ente americano dei parchi nazionali, il centro tedesco di ricerca geologica (Gfz) e l'universita' israeliana di Haifa.

La situazione dei cieli e' stata fotografata grazie ai dati raccolti dal satellite Suomi Npp di Nasa e Noaa: rielaborati da una quarantina di computer (con un software che ha calcolato la propagazione della luce in atmosfera), sono stati poi calibrati con una serie di osservazioni da terra, raccolte per il 20% da cittadini volontari.

I dati dimostrano che, in termini di superficie, Italia e Sud Corea sono i Paesi piu' 'abbagliati' del G20, mentre Canada e Australia sono quelli piu' bui. Nell'Europa occidentale, i cieli meno inquinati sono quelli di Scozia, Svezia, Norvegia, e a tratti anche quelli di Austria e Spagna. Su scala globale, lo smog luminoso nasconde la Via Lattea ad un terzo dell'umanita'.

Le informazioni contenute nell'atlante sono molto preziose, aggiunge Falchi, ''soprattutto ora che ci troviamo sulla soglia di una transizione mondiale verso la tecnologia led che, a parita' di luce prodotta, potra' aumentare l'inquinamento luminoso nella parte blu dello spettro di un fattore tre''.

Siamo tutti fatti di stelle. - Luisa Alessio

picture_carlo_abate2

Durante la vita di una stella c’è continuo ricambio di elementi chimici: più ce ne sono più è giovane. Quelle povere di metalli sono invece molto vecchie, le più vicine al Big Bang, e ci aiutano a capire l’origine dell’universo.

RICERCANDO ALL’ESTERO – “Siamo qui a parlare grazie al contributo di 14 miliardi di evoluzione stellare, perché generazioni di stelle hanno prodotto tutti gli elementi chimici di cui c’era bisogno. Il carbonio è importante per ovvie ragioni, non ci sarebbe stata la vita altrimenti; lo stesso vale per il silicio di cui sono fatti i nostri computer e per tutti gli altri elementi che hanno reso la Terra il pianeta che conosciamo. Studiare l’evoluzione chimica dell’universo significa studiare perché siamo qua”.
Nome: Carlo Abate
Età:
 31 anni
Nato a: Trieste
Vivo a: Bonn (Germania)
Dottorato in: Astrofisica (Nijmegen, Paesi Bassi)
Ricerca: Formazione ed evoluzione delle stelle ricche in carbonio (CEMP).
Istituto: Sterrenkunding Instituut (Utrecht), Radboud University (Nijmegen), Argelander-Institut für Astronomie (Bonn)
Interessi: andare in bicicletta, camminare, ballare la salsa, suonare la chitarra, la musica di Bruce Springsteen.
Di Bonn mi piace: le colline dove passeggiare e il Reno.
Di Bonn non mi piace: non ha il mare.
Pensiero: If you wish to make an apple pie from scratch, you must first invent the universe (Carl Sagan, Cosmos 1980)
Che cosa sono le stelle CEMP e perché sono importanti?
L’acronimo sta per stelle Carbon-Enhanced Metal Poor, cioè stelle povere di metalli ma particolarmente ricche in carbonio. In astronomia chiamiamo metalli tutti gli elementi che non sono idrogeno ed elio.
Una stella si forma da una nube di gas dotata di una certa composizione chimica. Per le prime stelle, il gas conteneva quasi esclusivamente idrogeno e una minuscola percentuale di altri elementi. Il resto dei metalli possono derivare dalle reazioni nucleari che si verificano durante la vita di una stella. Alla sua morte, i vari elementi vengono rilasciati nel mezzo interstellare e da questa nube di gas possono nascere altre stelle. Quindi più una stella è povera di metalli più è vecchia, perché si è formata all’interno di un gas molto simile a quello primordiale, al momento del Big Bang. Invece più una stella è ricca in metalli, più la sua formazione è recente.
Studiare le stelle povere di metalli, perciò, vuol dire studiare le prime generazioni di stelle, quelle che si sono formate all’inizio. Idealmente vorremmo analizzare proprio le prime, ma sono stelle molto rare, anzi per il momento forse non ne è stata osservata nemmeno una. Questo perché una stella vive un tempo limitato e ha una certa quantità di idrogeno che brucia durante la sua vita: più grande è la stella, più velocemente brucia idrogeno. Una stella nata 14 miliardi di anni fa, poco dopo il Big Bang, e viva ancora adesso, è una stella molto piccola e molto poco luminosa che perciò non riusciamo a vedere. Le stelle che riusciamo a osservare sono quelle di seconda generazione, la cui composizione chimica è l’impronta della generazione precedente. Queste sono le stelle della mia ricerca.
Quali sono le più vecchie stelle osservate? 
Di recente è stata osservata una stella senza ferro, elemento relativamente facile da analizzare perché ha uno spettro di assorbimento molto caratteristico. In questo studio le bande di assorbimento del ferro erano talmente deboli che i ricercatori non sono riusciti a misurarle ma solo a stabilire un limite di concentrazione. Nella stella della ricerca l’abbondanza di ferro è 10 milioni di volte minore rispetto a quella che c’è nel Sole, cioè praticamente zero. Però è una stella sola. E con una non si fa molto.
Come si sono formate le stelle CEMP? 
Ci sono diverse teorie. In genere, le stelle di popolazione 2 hanno una quantità di ferro circa 100-1000 volte inferiore rispetto al Sole e ci si aspettava che tutta la loro composizione chimica variasse di conseguenza. La quantità dei metalli in una stella, infatti, dovrebbe scalare in maniera più o meno uguale in rapporto al ferro e a confronto con quella del sole.
Questo vale per il 90% delle stelle. C’è un certo numero di stelle, tra cui le CEMP, che si comporta in modo diverso. In particolare, nelle stelle CEMP il rapporto di abbondanza chimica carbonio/ferro è 10 volte maggiore rispetto al Sole.
Il punto ora è capire da dove viene tutto questo carbonio. Una delle possibili spiegazioni è considerare un sistema binario di stelle, in cui uno dei due oggetti produce carbonio e lo rilascia all’esterno durante le fasi finali della vita, sotto forma di vento stellare. La seconda stella, trovandosi nell’ambiente circostante, può raccogliere parte del carbonio espulso. Di fatto non vediamo un sistema binario, perché la prima stella, quella che ha prodotto il carbonio, una volta concluso il suo ciclo è diventata una nana bianca, molto piccola, poco luminosa e invisibile. Quella che vediamo è una stella con una composizione chimica che non si spiega attraverso il classico modello di evoluzione stellare.
Nella mia ricerca ho studiato le varie parti di questo sistema binario. Ci sono molti meccanismi che ancora non conosciamo: per esempio, non sappiamo esattamente come funziona il trasferimento di massa da una stella all’altra o qual è la fase in cui una stella può produrre il carbonio e gli altri elementi osservati nelle CEMP. O quali sono le caratteristiche della popolazione originaria, quante sono binarie, quanto sono distanti tra loro le varie coppie, quanto sono grandi.
Come si possono studiare le CEMP?
Esistono diversi modelli per descrivere le CEMP, molti sono da testare, alcuni sono troppo complicati e in ogni caso trovare una stella esattamente in questa fase non è facile. Ricordiamoci che si tratta di una popolazione molto vecchia di stelle, quelle più grandi sono morte da miliardi di anni e quelle che riusciamo a osservare sono le ultime superstiti.
La mia ricerca è partita da un modello già esistente, usato per studiare il trasferimento di massa da una stella più grande a una più piccola attraverso il vento stellare. Il modello originario però faceva simulazioni troppo complesse, richiedeva tempi di calcolo troppo lunghi e descriveva il comportamento di pochissime stelle. Ho perciò provato a semplificarlo per aumentare il numero di sistemi che si potevano studiare e ho effettivamente messo a punto un meccanismo che funziona abbastanza bene. Almeno per le CEMP. Certo, ci sono una marea di altri problemi che devono ancora essere risolti. Ma ci stiamo avvicinando.
Quali sono le prospettive future del tuo lavoro?
Sicuramente migliorare il modello sul trasferimento di energia e cercare di capire cosa viene davvero prodotto, in termini di elementi chimici, dalla stella che non vediamo nel sistema binario. Quindi stiamo facendo studi di evoluzione stellare per capire quali sono le condizioni fisiche all’interno di una stella nelle fasi finali della sua evoluzione.

sabato 11 giugno 2016

ROMA QUARTACCIO.......LA PRIORITA' SONO LE OLIMPIADI E LO STADIO.

Cos'è lo scompenso cardiaco: prima causa di ricovero over65.

L'infografica sullo scompenso cardiaco © Ansa

Colpisce 600 mila italiani, da infarto, fibrillazione o ipertensione.

''Lo scompenso cardiaco rappresenta la prima causa di ricovero in tutti gli ospedali per i pazienti sopra i 65 anni. E' un problema di salute pubblica che riguarda 600 mila italiani, soprattutto dopo i 65 anni. A soffrirne e' fra il 10 e il 12% degli anziani'': e' il presidente dell'Anmco, l'Associazione Nazionale Medici Cardiologi Ospedalieri, Michele Gulizia, a spiegare quali sono le caratteristiche della malattia che ha portato nuovamente Silvio Berlusconi in ospedale.
 ''Lo scompenso e' una patologia legata ad una insufficiente contrazione del cuore. Si diventa scompensati dopo un infarto per occlusione di una coronaria che fa morire una parte del muscolo cardiaco che diventa meno capace di mandare il circolo il sangue di cui c'e' bisogno'' ha spiegato Gulizia. Altra categoria a rischio e' quella dei pazienti con fibrillazione atriale, soprattutto quando e' permanente. ''Berlusconi mise una pacemaker (si parlava proprio di problemi di fibrillazione)'' ricorda Gulizia nel 2006. Si sottopose ad un intervento negli Stati Uniti.
 Lo scorso anno a dicembre la necessita' di sostituirlo (intervento definito di routine) lo porto' nuovamente in ospedale al San Raffaele di Milano. Ma anche diabete e ipertensione sono responsabile della malattia. Fondamentale e' la terapia con i farmaci, ai quali si aggiungono i diuretici per eliminate i liquidi che si creano a causa di questa insufficienza, che in fase acuta ha una mortalita' che puo' arrivare al 40%. I sintomi sono diversi: si va dalla incapacita' di svolgere azioni fino alla sensazione di mancanza di aria (dispnea), palpitazioni ma anche pallore.

Europei di calcio.




Birre....