Visualizzazione post con etichetta astronomia. Mostra tutti i post
Visualizzazione post con etichetta astronomia. Mostra tutti i post

martedì 27 agosto 2024

Captato sulla Terra segnale radio di 8 miliardi di anni fa proveniente dallo spazio profondo. - Pasquale D'Anna

 

Questo “lampo radio veloce” (FRB) è tra i più distanti mai rilevato ed ha rilasciato l’equivalente dell’intera emissione del nostro Sole in 30 anni in meno di un millisecondo.

Un’equipe internazionale ha individuato un’esplosione molto distante di onde cosmiche della durata di meno di un millisecondo. Questo “lampo radio veloce” (FRB dall’inglese fast radio burst) è uno dei più distanti mai rilevato. La sua origine è stata individuata dal VLT (Very Large Telescope) dell’ESO in una galassia così lontana che la sua luce ha impiegato otto miliardi di anni per raggiungerci. Questo FRB è anche uno dei più energetici mai osservati: in una minuta frazione di secondo ha rilasciato l’equivalente dell’intera emissione del nostro Sole in 30 anni.

FRB 20220610A.

La scoperta dell’esplosione, chiamata FRB 20220610A, è stata effettuata nel giugno dello scorso anno dal radiotelescopio ASKAP in Australia e ha superato del 50% il precedente record di distanza stabilito dallo stesso gruppo. La scoperta conferma che gli FRB possono essere utilizzati per misurare la materia “mancante” tra le galassie, fornendo un nuovo modo di “pesare” l’Universo. Gli attuali metodi di stima della massa dell’Universo danno risposte contrastanti e sfidano il modello standard della cosmologia.

Segnale radio
Rappresentazione artistica di un lampo radio veloce (FRB). Credit: ESO / M. Kornmesser

L’importanza della rilevazione.
Trovare FRB distanti è fondamentale per misurare con precisione la materia mancante dell’Universo, come dimostrato dall’astronomo australiano Jean-Pierre (“J-P”) Macquart, deceduto nel 2020. Il risultato rappresenta il limite di ciò che è ottenibile oggi con i telescopi, anche se gli astronomi avranno presto gli strumenti per rilevare lampi ancora più vecchi e distanti, individuarne le  sorgenti e misurare la materia mancante dell’Universo. L’organizzazione SKAO (Square Kilometre Array Observatory) sta attualmente costruendo due radiotelescopi in Sud Africa e Australia che saranno in grado di trovare migliaia di FRB, compresi quelli molto distanti che non possono essere rilevati con gli strumenti attuali. L’ELT (Extremely Large Telescope) dell’ESO, un telescopio di 39 metri in costruzione nel deserto cileno di Atacama, sarà uno dei pochi telescopi in grado di studiare le galassie in cui si originano lampi ancora più lontani di FRB 20220610A.

immagine di copertina credit Jingchuan Yu / Beijing Planetarium

https://www.passioneastronomia.it/captato-sulla-terra-segnale-radio-di-8-miliardi-di-anni-fa-proveniente-dallo-spazio-profondo/?fbclid=IwY2xjawE66t1leHRuA2FlbQIxMQABHXq4SCi49io8lfqIT16qYsvZJ1xFF6TYRZ6G-fsKyXc6cg3SZUrAdASZlw_aem_q4cH30w66a3HXVKy0rKtsw

venerdì 26 luglio 2024

Verso la soluzione del problema dell’ultimo parsec. - Maura Sandri

Simulazione della luce emessa da un sistema binario di buchi neri supermassicci in cui il gas circostante è otticamente sottile (trasparente). Vista da 0 gradi di inclinazione, ovvero direttamente sopra il piano del disco. Crediti: Nasa's Goddard Space Flight Center/Scott Noble; d'Ascoli et al. 2018.

 Scoperto da tre ricercatori un legame tra alcuni degli oggetti più grandi dell’universo e quelli più piccoli: i buchi neri supermassicci e le particelle di materia oscura. I loro calcoli rivelano che è possibile superare l'annoso “problema dell’ultimo parsec” e arrivare alla fusione di buchi neri supermassicci considerando il comportamento delle particelle di materia oscura. Tutti i dettagli su Physical Review Letters.

Quando due galassie si fondono, è normale aspettarsi un’analoga sorte anche per i buchi neri supermassicci che risiedono nei loro centri. Tuttavia, tentando di modellare come ciò avviene, gli astronomi incontrano da anni un problema. Per avvicinarsi, i due buchi neri devono disperdere energia. All’inizio l’energia viene trasferita al materiale circostante, gas e polvere. Ma quando arrivano alla distanza di un parsec l’uno dall’altro – poco più di tre anni luce – sembra che non ci sia più abbastanza “materiale” su cui trasferire energia. E non si avvicinano più. In astrofisica, questa circostanza è nota come il problema dell’ultimo parsec.

Secondo un nuovo studio pubblicato su Physical Review Letters, quell’ultimo parsec può essere percorso considerando il comportamento, finora trascurato, delle particelle di materia oscura.

Nel giugno 2023, gli astrofisici annunciarono di aver rilevato un fondo di onde gravitazionali che permea l’universo, ipotizzando che provenisse da milioni di coppie di buchi neri supermassicci in fusione, ciascuno miliardi di volte più massiccio del Sole. Ma riecco il problema dell’ultimo parsec: le simulazioni teoriche non riescono a far superare loro quell’ultimo parsec. Come fanno, quindi, a fondersi?

Oltre a essere in conflitto con la teoria secondo cui i buchi neri supermassicci che si stanno fondendo sono la sorgente del fondo di onde gravitazionali, il problema dell’ultimo parsec è anche in contrasto con la teoria secondo cui i buchi neri supermassicci si sviluppano dalla fusione di buchi neri meno massicci.

«Noi mostriamo che l’effetto della materia oscura, precedentemente trascurato, può aiutare i buchi neri supermassicci a superare l’ultimo parsec di separazione e a fondersi», spiega il primo autore Gonzalo Alonso-Álvarez, del Dipartimento di Fisica dell’Università di Toronto. «I nostri calcoli spiegano come ciò possa avvenire, a differenza di quanto si pensava in precedenza».

Mentre i modelli precedenti hanno sempre escluso l’impatto della materia oscura sulle orbite dei buchi neri supermassicci, il nuovo modello rivela che le particelle di materia oscura interagiscono tra loro in modo tale da non disperdersi. La densità dell’alone di materia oscura rimane abbastanza alta da far sì che le interazioni tra le particelle e i buchi neri supermassicci continuino a degradare le orbite dei buchi neri, permettendo loro di fondersi. «La possibilità che le particelle di materia oscura interagiscano tra loro è un’ipotesi che abbiamo fatto noi, un ingrediente in più che non tutti i modelli di materia oscura contengono», dice Alonso-Álvarez. «La nostra tesi è che solo i modelli con questo ingrediente possono risolvere il problema dell’ultimo parsec».

Il rumore di fondo generato da queste colossali collisioni cosmiche è costituito da onde gravitazionali di lunghezza d’onda molto maggiore rispetto a quelle rilevate per la prima volta nel 2015 dagli astrofisici del Laser Interferometer Gravitational-Wave Observatory (Ligo). Quelle onde gravitazionali sono state generate dalla fusione di due buchi neri, entrambi di massa circa 30 volte superiore a quella del Sole.

Il fondo che interessa agli autori è stato rilevato negli ultimi anni dagli scienziati che operano con il Pulsar Timing Array, che rivela le onde gravitazionali misurando le minime variazioni nei segnali delle pulsar, stelle di neutroni in rapida rotazione che emettono forti impulsi radio. «Una previsione della nostra proposta è che lo spettro delle onde gravitazionali osservate dal pulsar timing array dovrebbe essere attenuato alle basse frequenze», sostiene James Cline della McGill University. «I dati attuali accennano già a questo comportamento e nuovi dati potrebbero confermarlo nei prossimi anni».

Oltre a fornire informazioni sulle fusioni di buchi neri supermassicci e sul segnale di fondo delle onde gravitazionali, il nuovo risultato offre una finestra sulla natura della materia oscura. «Il nostro lavoro rappresenta un nuovo modo per aiutarci a comprendere la natura particellare della materia oscura», afferma Alonso-Álvarez. «Abbiamo scoperto che l’evoluzione delle orbite dei buchi neri è molto sensibile alla microfisica della materia oscura e questo significa che possiamo usare le osservazioni delle fusioni dei buchi neri supermassicci per capire meglio queste particelle».

Ad esempio, i ricercatori hanno scoperto che le interazioni tra le particelle di materia oscura modellate spiegano anche le forme degli aloni galattici di materia oscura. «Abbiamo scoperto che il problema dell’ultimo parsec può essere risolto solo se le particelle di materia oscura interagiscono a una velocità tale da alterare la distribuzione della materia oscura su scala galattica», conclude Alonso-Álvarez. «Un risultato inaspettato, poiché le scale fisiche in cui avvengono i processi sono distanti tre o più ordini di grandezza».

https://www.media.inaf.it/2024/07/25/verso-la-soluzione-del-problema-dellultimo-parsec/?fbclid=IwY2xjawEQWaFleHRuA2FlbQIxMQABHT4R84kIiQlkXLp4G9KsLQmN38fSTSRCXaDrLwqTZBzRE7jNxrtEJc1C2g_aem_48shsv2cbMsacpHtn0jpPg

giovedì 11 luglio 2024

MATERIA OSCURA ATTORNO A GIOVE? - Elisabetta Bonora

SCHEMA DELLA PRODUZIONE DI H3+ SU GIOVE. L’EMISSIONE AURORALE DI H3+ VICINO AI POLI MAGNETICI È ORIGINATA DALLA PRECIPITAZIONE DI ELETTRONI E GLI UV ESTREMI PROVENIENTI DAL SOLE IRRADIANO IL LATO DIURNO E DOMINANO LA PRODUZIONE DI H3+ VICINO ALL’EQUATORE. MA È PREVISTO ALCUN H3+ SIGNIFICATIVO ALLE BASSE LATITUDINI SUL LATO NOTTURNO. CREDITI: LETTERE DI REVISIONE FISICA (2024). DOI: 10.1103/PHYSREVLETT.132.26100

Nel loro studio, pubblicato su Physical Review LettersCarlos Blanco e Rebecca Leane hanno analizzato le misurazioni notturne sulla regione equatoriale di Giove, per ridurre al minimo le influenze aurorali.

La materia oscura è un'ipotetica componente di materia che, diversamente dalla materia ordinaria, non emetterebbe radiazione elettromagnetica ma sarebbe rilevabile attraverso i suoi effetti gravitazionali. È stata proposta negli anni '30 del secolo scorso e ancora elude gli scienziati i quali, però, ritengono che costituisca circa il 70-80% di tutta la materia nell’universo. È stata introdotta per giustificare diverse osservazioni astrofisiche, in particolare delle stime della massa delle galassie o degli ammassi di galassie e delle proprietà delle fluttuazioni nel fondo cosmologico.

I ricercatori ipotizzano che potrebbe essere rilevata indirettamente identificando il calore o la luce emessa quando le particelle di materia oscura si scontrano e si distruggono a vicenda. E la natura della luce nell’atmosfera esterna sul lato notturno di Giove potrebbe essere proprio questo genere di prova.

Il team suggerisce che le particelle di materia oscura vengano attratte verso il pianeta dalla sua forte gravità e si scontrino con la ionosfera, producendo, talvolta, fotoni.

Per confermare la propria teoria, il team ha analizzato i dati del Visual and Infrared Mapping Spectrometer a bordo della sonda Cassini, che sorvolò il pianeta nel dicembre 2000, prima di iniziare la sua storica missione nel sistema di Saturno. Particolare attenzione è stata rivolta alle tre ore di osservazioni sul lato notturno di Giove, sulla sua regione equatoriale. Gli scienziati cercavano prove di una maggior produzione di  H3+, un catione idrogenonio che, secondo le teorie, sarebbe prodotto dalle collisioni di materia oscura e non dovrebbe essere presente al buio alle basse latitudini.

In effetti, l' H3+ è stato trovato ma ancora non è chiaro se tale quantità è effettivamente superiore a quella che potrebbe essere prodotta in altre circostanze.

https://aliveuniverse.today/flash-news/spazio-astronomia/8883-materia-oscura-attorno-a-giove/

lunedì 8 luglio 2024

Cos’è un quasar? - Angelo Petrone

 

Quasar: i fari cosmici che svelano i segreti dell’universo

I quasar (dall’inglese “quasi-stellar radio source”, ossia “sorgente radio quasi-stellare”) sono tra gli oggetti più misteriosi e affascinanti dell’universo. Scoperti negli anni ’60, i quasar sono nuclei galattici attivi estremamente luminosi che si trovano a grandi distanze dalla Terra. La loro luminosità è talmente elevata che riescono a offuscare l’intera galassia ospite.

Caratteristiche dei quasar.

Luminosità: i quasar sono tra gli oggetti più luminosi dell’universo, in grado di emettere energia equivalente a quella di centinaia di galassie. Questa straordinaria luminosità è dovuta al fatto che al centro dei quasar si trovano buchi neri supermassicci, con masse che possono variare da milioni a miliardi di volte quella del Sole. La materia che cade nel buco nero viene riscaldata a temperature elevatissime, emettendo una quantità enorme di radiazioni che possiamo osservare dalla Terra.

Distanza: i quasar si trovano a distanze cosmologiche, cioè a miliardi di anni luce dalla Terra. Questo significa che li osserviamo com’erano miliardi di anni fa. Lo studio dei quasar ci permette quindi di guardare indietro nel tempo e di capire meglio l’evoluzione dell’universo.

Spettro elettromagnetico: i quasar emettono radiazioni su tutto lo spettro elettromagnetico, dalle onde radio ai raggi X e gamma. Questa emissione multi-frequenza è dovuta alla presenza di getti relativistici di particelle che vengono espulsi dal nucleo galattico a velocità prossime a quelle della luce.

Redshift: uno degli aspetti più caratteristici dei quasar è il loro elevato redshift, cioè lo spostamento verso il rosso delle linee spettrali. Questo fenomeno è dovuto all’espansione dell’universo e indica che i quasar sono oggetti molto lontani da noi.

Importanza dei quasar nella cosmologia

I quasar giocano un ruolo fondamentale nella cosmologia per diversi motivi:

Sonde cosmiche: grazie alla loro luminosità, i quasar possono essere utilizzati come “sonde cosmiche” per studiare la struttura a grande scala dell’universo. L’osservazione dei quasar e della loro distribuzione nello spazio permette di comprendere meglio la distribuzione della materia nell’universo.

Evoluzione delle galassie: i quasar forniscono indizi preziosi sull’evoluzione delle galassie. Si ritiene che molte galassie, compresa la Via Lattea, abbiano attraversato una fase di quasar nel loro passato. Studiando i quasar, possiamo ottenere informazioni sul processo di formazione e crescita dei buchi neri supermassicci e sulla loro interazione con le galassie ospiti.

Materia oscura e energia oscura: le osservazioni dei quasar possono contribuire a svelare i misteri della materia oscura e dell’energia oscura, due componenti fondamentali dell’universo ancora poco comprese. Le lenti gravitazionali create dai quasar, ad esempio, possono essere utilizzate per mappare la distribuzione della materia oscura.

Scoperta e studio dei quasar.

Il primo quasar è stato identificato nel 1963 dall’astronomo Maarten Schmidt, che ha osservato un oggetto celeste estremamente luminoso con uno spostamento verso il rosso molto elevato. Questa scoperta ha rivoluzionato l’astronomia, aprendo una nuova finestra sull’universo lontano e sull’energia estrema.

Da allora, migliaia di quasar sono stati scoperti e studiati con vari strumenti, tra cui telescopi ottici, radio e satelliti a raggi X. Le missioni spaziali, come il Telescopio Spaziale Hubble, hanno fornito immagini dettagliate dei quasar e delle loro galassie ospiti, permettendo di studiare questi oggetti in modo sempre più approfondito.

I quasar sono tra gli oggetti più affascinanti e misteriosi dell’universo. La loro straordinaria luminosità, combinata con la grande distanza a cui si trovano, li rende strumenti preziosi per lo studio della cosmologia e dell’evoluzione delle galassie. Nonostante i grandi progressi fatti negli ultimi decenni, i quasar continuano a essere oggetto di intense ricerche e scoperte, alimentando il nostro desiderio di comprendere meglio l’universo in cui viviamo.

https://www.scienzenotizie.it/2024/07/07/cose-un-quasar-3987817?fbclid=IwZXh0bgNhZW0CMTEAAR0Wzgz2jffKgzw5-H4fbluoEzHMh33kuZCrHnJ2_iYTwt3DMz1rIlDM-Xs_aem_xgnc-i6RyndF2ab2z48l_w

giovedì 27 giugno 2024

I sumeri e la conoscenza dell'astronomia.

 

Oltre 6.000 anni fa, una misteriosa civiltà aveva dettagliate mappe del nostro sistema solare. I Sumeri hanno creato questi disegni usando l'argilla. I disegni sopravvissuti mostrano che hanno capito che il sole è una stella al centro del sistema solare e che altri pianeti gli ruotano intorno. Hanno persino disegnato accuratamente le orbite e le posizioni dei pianeti. Curiosamente, alcuni dei loro dipinti raffigurano anche strane immagini con entità giganti. I Sumeri li consideravano delle divinità. Intrigantemente, alcuni disegni di questi dei mostrano anche simboli che assomigliano a sequenze di DNA umano. Inoltre, avevano simboli legati alla medicina, che assomigliano significativamente ai moderni simboli medici. Ancora oggi, non riusciamo a capire come migliaia di anni fa, la più antica civiltà dell'umanità avesse una conoscenza così profonda dell'astronomia.
Questo solleva la questione se questa antica civiltà non fosse arretrata, ma piuttosto fosse avanzata ben oltre la nostra attuale comprensione di esse.

lunedì 10 giugno 2024

È esplosa una stella a 95 milioni di anni luce dalla Terra: guarda la foto della supernova.

 

La supernova è avvenuta nella galassia NGC 3524: la stella è esplosa quando sulla Terra c’erano i dinosauri e solo ora ne vediamo la luce.

Le esplosioni stellari non sono affatto rare e per questa ragione vengono individuate sempre più spesso. Stavolta la supernova c’è stata nella galassia lenticolare NGC 3524 sita a 95 milioni di anni luce dalla Terra ed è stata classifica di tipo Ia (è più luminosa della galassia intera). Di seguito, ecco la foto dell’esplosione (l’evento è stato battezzato come SN 2024inv) del nostro amico astrofisico Gianluca Masi del Virtual Telescope Project:

SN 2024inv supernova stella
L’immagine straordinaria dell’esplosione della stella ripresa da Manciano (Grosseto). Credit: The Virtual Telescope Project

Ma come muoiono di preciso questi colossi?

Nel caso classico delle supernovae tipo II, formanti una stella di neutroni o un buco nero, abbiamo stadi di bruciamento successivi che si susseguono nel modo intuitivo che conosciamo: bruciamento elio, fine elio e contrazione, accensione e bruciamento del carbonio, fine carbonio e contrazione, accensione del neon fino a bruciare prima l’ossigeno, poi il silicio e produrre un nucleo di ferro appena prima del collasso finale. A questo punto, la densità centrale raggiungerà valori abbastanza alti da indurre catture elettroniche nei nuclei atomici, trasformando la quasi totalità di protoni in neutroni (ed emettendo neutrini, che forniranno la “spinta” decisiva alla supernova), formando così una stella di neutroni, o un buco nero se la massa e sufficientemente alta. Eventi potentissimo, bellissimi tanto quanto potenzialmente distruttivi.

Fonte, immagine di copertina (rappresentazione artistica) credit M. Kornmesser / ESO

https://www.passioneastronomia.it/e-esplosa-una-stella-a-95-milioni-di-anni-luce-dalla-terra-guarda-la-foto-della-supernova/

martedì 14 maggio 2024

La scoperta del Grande Anello mette in crisi le attuali conoscenze sull’Universo. - Dènise Meloni

 

Una struttura su grade scala chiamata Grande Anello presente nell’Universo sta mettendo in crisi il modello standard che non prevede la possibilità che esistano strutture così grandi, in quanto la materia nell’universo dovrebbe essere distribuita in modo uniforme mentre una struttura così grande implica un’anomala alta concentrazione di materia in una regione relativamente limitata.

La scoperta del Grande Anello.

Gli astronomi hanno hanno individuato il un Grande Anello di galassie, con un diametro di circa 1,3 miliardi di anni luce e non corrisponde ad alcuna struttura conosciuta.

La scoperta, guidata dall’astronoma Alexia Lopez dell’Università del Lancashire Centrale, è stata presentata al 243esimo incontro dell’American Astronomical Society nel gennaio 2024 ed è stata riportata in un documento disponibile su arXiv.

Si tratta della seconda struttura gigante scoperta da Lopez e dai suoi colleghi. La prima, chiamata Arco dei Giganti è stata in realtà individuata nella stessa parte di cielo, alla stessa distanza. Quando la scoperta dell’arco è stata annunciata nel 2021, ha lasciato perplessi gli astronomi. Il Grande Anello non ha fatto altro altro che approfondire il mistero.

Che cos’è il Grande Anello?

Nessuna di queste due strutture ultra-grandi è facile da spiegare nella nostra attuale comprensione dell’Universo“, ha detto Lopez: “E le loro dimensioni ultra-grandi, le forme distintive e la vicinanza cosmologica devono sicuramente dirci qualcosa di importante, ma cosa esattamente?”.

Il collegamento più immediato sembra essere con qualcosa chiamato Oscillazione Acustica Barionica (BAO). Si tratta di gigantesche disposizioni circolari di galassie che si trovano in tutto lo Spazio. In realtà sono sfere, fossili di onde acustiche che si propagarono attraverso l’Universo primordiale e poi si sono congelate quando lo Spazio è diventato così rarefatto che le onde acustiche non potevano più viaggiare.

Il Grande Anello non è un BAO. I BAO hanno tutti una dimensione fissa di circa 1 miliardo di anni luce di diametro. E una sua ispezione approfondita mostra che è più simile a una forma di cavatappi allineata in modo tale da sembrare un anello.

Cosa significa questo per il Principio cosmologico, il quale afferma che, in tutte le direzioni, ogni dato pezzo di Spazio dovrebbe apparire più o meno uguale a tutti gli altri pezzi di Spazio?

Ci aspettiamo che la materia sia distribuita uniformemente ovunque nello Spazio quando osserviamo l’Universo su larga scala, quindi non dovrebbero esserci irregolarità evidenti al di sopra di una certa dimensione“, ha spiegato Lopez.

I cosmologi hanno calcolato che l’attuale limite teorico delle dimensioni delle strutture sia di 1,2 miliardi di anni luce, ma entrambe queste strutture sono molto più grandi: l’Arco Gigante è quasi tre volte più grande e la circonferenza del Grande Anello è paragonabile alla lunghezza dell’Arco Gigante”.

Le dimensioni sono solo uno dei problemi. L’altro è cosa significa per la cosmologia, lo studio dell’evoluzione dell’Universo. Il modello attuale è quello che attualmente si adatta meglio a quello che osserviamo, ma ci sono alcune caratteristiche che sono difficili da spiegare nel suo quadro.

Esistono altri modelli che sono stati proposti per affrontare queste particolarità. In uno di questi modelli, la cosmologia ciclica conforme di Roger Penrose, in cui l’Universo attraversa infiniti cicli di espansione e contrazione, sono previste strutture ad anello, anche se vale la pena notare che la cosmologia ciclica conforme presenta problemi significativi.

Un’altra possibilità è che le strutture siano un tipo di difetto topologico nel tessuto dello spazio-tempo noto come stringhe cosmiche. Si pensa che queste siano emerse nell’Universo primordiale quando lo spazio-tempo si è allungato, per poi stabilizzarsi al loro posto. Non sono state trovate molte prove fisiche dell’esistenza di stringhe cosmiche, ma le prove teoriche sono piuttosto promettenti.

Alexia, insieme al consulente Dr. Roger Clowes, entrambi del Jeremiah Horrocks Institute dell’UCLan, e al collaboratore Gerard Williger dell’Università di Louisville, USA, hanno scoperto la nuova struttura osservando le linee di assorbimento negli spettri dei quasar dello Sloan Digital Sky Survey (SDSS).

Utilizzando lo stesso metodo che ha portato alla scoperta dell’Arco Gigante, hanno osservato i sistemi di assorbimento del Magnesio-II (o MgII – significa che l’atomo ha perso un elettrone), intervenuti retroilluminati dai quasar, che sono remote galassie super luminose. Questi quasar molto distanti e molto luminosi e si comportano come lampade giganti che puntano un riflettore attraverso galassie lontane, ma molto più deboli, che altrimenti resterebbero invisibili.

Conclusioni.

Al momento nessuno sa con certezza cosa significhino il Grande Anello e l’Arco Gigante. Potrebbero semplicemente essere disposizioni casuali di galassie che volteggiano nel cielo, anche se la probabilità che questo accada sembra piuttosto remota.

La migliore speranza sarebbe quella di trovare altre disposizioni di galassie simili, sparse in tutto l’Universo, nascoste in bella vista.

Dalle attuali teorie cosmologiche non pensavamo che strutture di questa scala fossero possibili“, ha concluso Lopez: “Potremmo aspettarci forse una struttura estremamente grande in tutto il nostro Universo osservabile. Eppure, il Grande Anello e l’Arco Gigante sono due strutture enormi e sono persino vicini cosmologici, il che è straordinariamente interessante”.

https://reccom.org/scoperta-grande-anello-crisi-conoscenze-universo/

domenica 12 maggio 2024

Scoperto un buco nero mostruoso con 6 galassie intrappolate nella sua rete gravitazionale, guarda il video.

 

Gli astronomi hanno scoperto nel 2020 sei galassie intrappolate nella “ragnatela” cosmica di un buco nero supermassiccio quando l’Universo aveva meno di un miliardo di anni.

Gli astronomi hanno trovato nel 2020 sei galassie intorno a un buco nero supermassiccio osservato quando l’Universo aveva meno di un miliardo di anni (osservazioni effettuate grazie al VLT dell’ESO). Questa è la prima volta in cui un raggruppamento così compatto è stato visto così presto dopo il Big Bang e la scoperta ci aiuta a capire meglio come i buchi neri supermassicci, uno dei quali si trova al centro della nostra galassia, la Via Lattea, si siano formati e siano cresciuti fino alle odierne enormi dimensioni così velocemente. La scoperta viene in supporto alla teoria secondo cui i buchi neri possono crescere rapidamente all’interno di grandi strutture, simili a ragnatele, che contengono gas in quantità sufficiente per alimentarli.

Le osservazioni del buco nero.

Buco nero supermassiccio
Rappresentazione artistica della ragnatela del buco nero supermassiccio. Credit: ESO / L. Calçada

Queste galassie circondano un buco nero supermassiccio e sono contenute da una “ragnatela” cosmica di gas che si estende fino a 300 volte le dimensioni della Via Lattea. L‘Universo aveva solo 0,9 miliardi di anni!

La crescita dei buchi neri.

I primissimi buchi neri, che si pensa si siano formati dal collasso delle prime stelle, devono essere cresciuti molto velocemente per raggiungere masse di un miliardo di soli entro i primi 0,9 miliardi di anni di vita dell’Universo. Ma gli astronomi non riuscivano a spiegare come quantità sufficientemente grandi di “combustibile da buchi neri” avrebbero potuto essere disponibili per consentire a questi oggetti di crescere fino a dimensioni così grandi in così poco tempo. La “ragnatela” e le galassie al suo interno contengono abbastanza gas per fornire il carburante di cui il buco nero centrale ha bisogno per diventare un gigante supermassiccio.

Galassie deboli

Le galassie che ora vengono rilevate sono tra le più deboli che gli attuali telescopi possano osservare. L’ELT (Extremely Large Telescope) dell’ESO studierà ancora questo incredibile oggetto.

https://www.passioneastronomia.it/scoperto-un-buco-nero-mostruoso-con-6-galassie-intrappolate-nella-sua-rete-gravitazionale-guarda-il-video/?fbclid=IwZXh0bgNhZW0CMTEAAR32-JPZGOvBh6YQi8IJEH8IdM9VRcNF45wauJiPyWBL-sfA6Z3CaQ1Itv4_aem_AWksu4N8ylH78cjzqzQoUq4qH-SyTLBGw8bBau4AsquT-exn54_G1Yhpto4GJtz9tSugcVPHx-nbSS2Xm4ZGKcAx

mercoledì 8 maggio 2024

La ricerca della glueball: una scoperta rivoluzionaria nella fisica delle particelle.

Rappresentazione di un protone, con il gluone che interagisce tra i tre quark. (Mahir KART/Shutterstock.com)

Fisici potrebbero aver individuato una glueball tramite il Beijing Spectrometer III, con implicazioni fondamentali nella teoria delle particelle.

I fisici potrebbero aver fatto una scoperta significativa: la presenza di una glueball. Questo termine non si riferisce alla colla comune, ma ad una particolare interazione tra i gluoni, i mediatori della forza nucleare forte, che sono responsabili del trasporto di questa forza tra i quark. La peculiarità di questa forza risiede nel fatto che non si manifesta in modo semplice come la gravità o l’elettromagnetismo, ma coinvolge tre diverse “cariche” che i fisici hanno chiamato “colore” negli anni ’60, non perché si tratti di un vero e proprio colore, ma per motivi che presto diventeranno chiari.

Per comprendere meglio, prendiamo ad esempio il protone, una particella che costituisce il nucleo atomico e che è composta da tre quark. Poiché la forza nucleare forte non introduce una nuova carica, le cariche dei tre quark devono annullarsi. Ogni quark ha una diversa “carica di colore”: blu, verde o rosso, che insieme si annullano reciprocamente, analogamente alle luci di questi colori che possono mescolarsi per creare la luce bianca.

Esistono anche particelle chiamate mesoni, composte da un quark e un antiquark, che non presentano “colore”. Di conseguenza, è logico pensare che esistano anche anticolore, come l’antiblu, l’antiverde e l’antirosso. I gluoni, che trasportano la forza nucleare forte, interagiscono con i quark e possono anche interagire tra di loro. È in questa interazione che la fisica diventa affascinante: i gluoni possono combinarsi per formare una particella senza la necessità di quark.

La ricerca di questa particolare particella è stata condotta utilizzando il Beijing Spectrometer III (BES III), un grande collider di particelle in grado di produrre un tipo specifico di mesone chiamato mesone (J/psi), composto da un quark charm e un antiquark charm. Durante il suo decadimento, si sono osservate delle caratteristiche interessanti.

Recenti studi condotti dai ricercatori della collaborazione hanno portato alla scoperta di una rara combinazione di un protone e un antiprotone, dopo aver analizzato oltre 10 miliardi di decadimenti di J/. Inoltre, è stata individuata una nuova particella denominata X(2370), il cui numero tra parentesi rappresenta la sua massa in megaelettronvolt diviso per la velocità della luce al quadrato. Questo valore è stato successivamente rivisto, collocando la massa effettiva intorno a 2395 MeV/c2, in linea con le aspettative teoriche riguardanti l’esistenza di una glueball a quella massa.

Le osservazioni effettuate sembrano essere coerenti con l’ipotesi della presenza di questa particella leggendaria, rappresentando i risultati più convincenti mai ottenuti a favore dell’esistenza dei glueballs. Tuttavia, non si tratta di una prova definitiva, poiché un’altra interazione tra quark e antiquark potrebbe generare la stessa particella. È necessario condurre ulteriori ricerche per confermare o confutare la natura di glueball di questa particella.

Lo studio dettagliato su questo argomento è stato pubblicato sulla prestigiosa rivista Physical Review Letters, evidenziando l’importanza e la complessità di questa ricerca nel campo della fisica delle particelle.

https://www.scienzenotizie.it/2024/05/08/la-ricerca-della-glueball-una-scoperta-rivoluzionaria-nella-fisica-delle-particelle-0085272?utm_source=dlvr.it&utm_medium=facebook