domenica 10 marzo 2024

Perché la luce subisce la gravità?

 

Perché la luce subisce la gravità e curva in sua presenza, se non ha massa?

Come spiego' Einstein nel divulgare le basi della relativita' generale... la risposta è semplice e richiede due affermazioni.
1) Perché la sua velocità non è infinita.
2) Perché la massa inerziale equivale alla massa gravitazionale.

E adesso la prima domanda che vi dovrebbe venire in mente immagino che sia:
"Che c'entra adesso la massa, se parliamo della luce, che di massa non ne ha? E soprattutto da quando le masse sono di due tipi?"

Ve lo spiego con due esempi.

Caso 1)
Immaginate di essere in un ascensore, mentre sta salendo.
Improvvisamente il cavo si spezza e voi precipitate.
Al di là del dramma, durante la caduta voi state galleggiando all'interno della cabina, e ogni cosa galleggia con voi.
Rispetto a ciò che vi circonda vi sembrerà di non essere più sotto l'effetto della gravità terrestre.
Questo solo perché la cabina precipita accelerando esattamente come voi a circa 9,8 m/sec2.
Ed ecco perché non è corretto dire che gli astronauti che galleggiano nello spazio sono in assenza di gravità, ma si dice invece che sono in caduta libera.
Quindi, se paradossalmente vi risvegliaste senza memoria all'interno di un ascensore in caduta libera, non sapreste dire se vi trovate nello spazio o sulla Terra (finché non vi schiantate al suolo, ovviamente...)

Caso 2)

Immaginate di essere viceversa in un astronave nello spazio, a galleggiare liberamente.
All'improvviso il pilota accende i motori e l'astronave parte con un accelerazione di 9,8 m/sec2.
A causa dell'inerzia, voi verreste spinti sulla parete opposta con la stessa accelerazione.
A quel punto potreste mettervi in piedi (su quella parete) e fare tutto quel che fate sulla terra perché avreste lo stesso peso.
Quindi, se paradossalmente vi risvegliaste senza memoria all'interno di astronave in accelerazione, non sapreste dire se vi trovate nello spazio o sulla Terra.

E a questo punto permettetemi una licenza: la Relatività Generale non la si deve ad Einstein ma a chi ha inventato gli ascensori!

I due casi precedenti sono utili a farci capire che di fatto per noi non c'è alcuna differenza tra l'accelerazione dovuta all'inerzia e quella dovuta alla gravità. Non siamo in grado di distinguerle in alcun modo. (Per favore, adesso non rispondetemi che le distinguiamo perché l'astronave è arredata in modo diverso da un ascensore, ok?)

E questo se ci pensate bene è strano. Molto strano.
Perché anche se la massa inerziale e quella gravitazionale sono grandezze omogenee e dunque hanno la stessa dimensione, di fatto sono concetti molto diversi.
La prima descrive la caratteristica dei corpi di opporsi al cambiamento del loro stato di moto: se il pilota accende i razzi dell'astronave tu vieni schiacciato sulla parete opposta perché la massa di cui sei fatto è "pigra" e vorrebbe continuare a fare quel che stava facendo prima (in questo caso specifico, niente).
La seconda invece descrive la capacità di attirare a sé altri corpi: questa è tutta un'altra cosa. Altroché pigrizia: questo suona come un superpotere, una cosa in stile "Magneto" degli X-Men, che di pigro non ha proprio nulla.

Una volta appurata questa "stranezza", cioè il fatto che possiamo considerare equivalenti la massa inerziale e quella gravitazionale, la cosa si fa interessante.

Immaginate di essere in quell'astronave spinta a 9.8 m/sec2. E voi che camminate tranquillamente sul fondo.
Avete una finestrella sottile sottile sulla parete alla vostra destra, diciamo posta a due metri da terra.
E all'improvviso da lì entra un raggio di luce (per semplicità diciamo un raggio laser).

Lui se ne stava andando per la sua strada, dritto dritto, ma finendo nella finestrella attraversa la stanza in cui vi trovate e finisce la sua corsa sulla parete opposta dell'astronave, dunque alla vostra sinistra, dove voi vedrete così un puntino luminoso.

La domanda fondamentale adesso è: a che altezza vedrete apparire quel puntino?
Se foste fermi ovviamente lo vedreste alla stessa altezza, cioé a due metri.
Ma voi vi state muovendo verso l'alto (rispetto al vostro punto di vista), e la luce come dicevamo all'inizio non ha una velocità infinita: quindi, per quanto poco, ci metterà del tempo per andare dalla parete di destra a quella di sinistra, e in quel tempo la vostra astronave si sarà spostata un pochino verso l'alto.
Dunque vedrete il puntino luminoso apparire un po' più in basso, rispetto ai due metri.
Ma non è la luce ad essersi abbassata, siete voi che nel frattempo siete saliti. Proprio come in un ascensore (ricordate l'equivalenza di prima?).

Attenti che non è finita, adesso anzi viene il bello.
Voi non vi state muovendo a velocità costante: voi siete sottoposti ad accelerazione, per via dei razzi accesi: cioé state accelerando a 9.8m/sec2.
Se foste stati in movimento a velocità costante, la traiettoria della luce, dalla parete di destra a quella di sinistra, sarebbe stata una retta inclinata verso il basso, per quanto abbiamo detto sopra.
Ma dato che voi accelerate, nel mentre che la luce attraversa la stanza in cui vi trovate, a ogni istante di tempo che passa, essa non scenderà verso il basso di un intervallo costante di spazio, ma scenderà anzi di un intervallo sempre crescente.

E se poteste vedere la traiettoria di quel raggio di luce come vi apparirebbe?
Semplice: sarebbe una curva.
Vedreste la luce curvare verso il basso.

Attenzione che questo è importante: come detto sopra, vale il principio che il raggio di luce in realtà non sta curvando.
Siete voi che state accelerando nella direzione perpendicolare al suo moto: e questo ve lo fa apparire curvo.

Ed ecco il gran finale.
In principio abbiamo detto che per noi non c'era differenza tra massa inerziale e gravitazionale.
Dunque per noi essere su un astronave sottoposta ad accelerazione di 9.8m/sec2 è esattamente come essere in piedi sul pianeta Terra.

Ed ecco dunque spiegato perché la luce curva in presenza di un campo gravitazionale.

#gravità
#luce
#ascensore
#massa
#inerziale

Niccolo' Gennari. 

https://www.facebook.com/photo/?fbid=3221592898145296&set=gm.1109764900289527&idorvanity=327721555160536

Nessun commento:

Posta un commento