Visualizzazione post con etichetta neri. Mostra tutti i post
Visualizzazione post con etichetta neri. Mostra tutti i post

domenica 2 giugno 2024

Nei buchi neri il tempo non esiste: la rivoluzionaria scoperta italiana.

 

I buchi neri non divorano la materia, la fanno ruotare all’esterno in un vortice di frammenti. Questa è la nuova immagine dei buchi neri che rivoluziona radicalmente la nostra comprensione di questi enigmatici oggetti cosmici.

Nonostante l’intensa attrazione gravitazionale che esercitano, la materia non riesce a entrare nei buchi neri perché, al loro interno, il concetto di tempo come lo conosciamo non esiste. “L’idea da tenere presente è che, entrando in un buco nero, il tempo diventa immaginario”, spiega Salvatore Capozziello, fisico del dipartimento di Fisica “E. Pancini” dell’Università Federico II di Napoli. Capozziello, insieme a Silvia De Bianchi dell’Università Statale di Milano e Emmanuele Battista dello stesso dipartimento di Fisica di Napoli, ha pubblicato una ricerca sulla rivista Physical Review D che sfida le attuali teorie sui buchi neri.

Il problema della singolarità.

Nella teoria della Relatività generale esiste il problema delle singolarità: punti dove le equazioni della fisica perdono di significato. Buchi neri e Big Bang rappresentano situazioni estreme che sfidano la nostra comprensione del tempo e dello spazio. “È un problema che ha preoccupato i fisici per decenni, a cominciare dallo stesso Einstein”, osserva Capozziello. Secondo le teorie attuali, un osservatore esterno vedrebbe un oggetto cadere in un buco nero per un tempo infinito, mentre un osservatore che cadesse con l’oggetto lo farebbe in un tempo finito. Tuttavia, nessuno sa cosa avvenga realmente all’interno di un buco nero poiché non esistono prove sperimentali.

Cosa succede se ci si avvicina a un buco nero.

Capozziello e il suo team hanno studiato cosa succede avvicinandosi a un buco nero utilizzando coordinate fisiche per analizzare le onde gravitazionali, basandosi sulla teoria di Einstein. Hanno scoperto che la velocità di caduta si riduce a zero e la curvatura dello spazio-tempo rimane finita, rendendo impossibile entrare nel buco nero. Questo fenomeno, chiamato “atemporalità” dai ricercatori, implica che oltre l’orizzonte degli eventi il tempo diventa immaginario e il buco nero non può essere trattato come un sistema dinamico.

Una fisica senza singolarità.

Di conseguenza, la materia, pur attratta dalla gravità del buco nero, non riesce a penetrarne l’interno e si accumula intorno ad esso. Questa teoria risolve uno dei più grandi enigmi della relatività generale di Einstein, dimostrando che i buchi neri non contengono una vera singolarità e non causano un collasso dello spazio-tempo. Propone invece una “fisica senza singolarità” che potrebbe anche applicarsi alla meccanica quantistica.

L’orizzonte degli eventi.

L’orizzonte degli eventi assume quindi una nuova definizione: diventa il limite oltre il quale il tempo diventa immaginario. Un osservatore può raggiungerlo, ma non attraversarlo. La famosa immagine del buco nero ottenuta nel 2019 dalla collaborazione Event Horizon Telescope rappresenterebbe, secondo questa teoria, le particelle che non riescono a entrare nel buco nero. Questo indica che i buchi neri non sarebbero divoratori di materia, come spesso rappresentati, ma oggetti che accumulano materia.

https://www.passioneastronomia.it/nei-buchi-neri-il-tempo-non-esiste-la-rivoluzionaria-scoperta-italiana/?fbclid=IwZXh0bgNhZW0CMTEAAR2rkGmcHlkU_glLOlW6CRgcuQKd158Ihb4LbO5gd0Gu-uC58W-3IwDIExQ_aem_AWc-ulenfCarlPlME9mrhcJw4ltCTKBk-DGwmseGxF0EgnJvS_6KGiHaQAxFNS6VBuUGhtOYwtHsh9fzDb1magqM

giovedì 4 marzo 2021

Buchi neri supermassicci dalla materia oscura. - Giuseppe Donatiello

 

UNO STUDIO ESPLORA UNA POSSIBILE ORIGINE DI QUESTI MOSTRI CELESTI.

È probabile che ogni grande galassia ospiti nel suo centro un buco nero supermassicio (Smbh), pesante milioni o miliardi di masse solari, come quello ripreso nel cuore di Messier 87. Esistono prove della presenza di questi oggetti già nel giovane Universo, 800 milioni di anni dopo il Big Bang.

Una presenza precoce che contrasta con lo scenario che indica la formazione di tali mostri da un collasso stellare e da un successivo accrescimento a spese della materia normale (stelle e nubi di materia).

Si ritiene che le primissime stelle, quelle di “Popolazione III”, fossero più massicce di quelle formatesi in seguito, quindi in grado di generare, esplodendo come supernove, i buchi neri di taglia stellare che sarebbero stati gli embrioni per quelli supermassici. Tuttavia, stime ragionevoli sulla tempistica rendono molto improbabile che i Smbh si siano formati con questo meccanismo in pochi milioni di anni. Deve essere intervenuto un meccanismo completamente diverso, ma quale?

Sono stati proposti scenari diversi per spiegare l’arcano, invocando per esempio il collasso d’intere regioni nel centro delle proto-galassie, considerando anche il ruolo della materia oscura in questi processi.

Un nuovo studio, guidato da Carlos R. Argüelles, ricercatore presso l’Universidad Nacional de La Plata e l’Icranet, propone la formazione di Smbh unicamente dal collasso di materia oscura. Questo modello era già stato proposto, ma il merito del nuovo studio consiste nel descrivere l’intero processo, partendo da regioni ad alta densità poste nel centro delle attuali galassie, con tutte le implicazioni cosmologiche che ne derivano.

Lo studio considera la presenza di notevoli concentrazioni di materia oscura nelle galassie. Le simulazioni hanno mostrato la possibilità di un collasso da nuclei di materia oscura, una volta raggiunta una soglia critica. Così, si formerebbe direttamente un buco nero con milioni di masse solari senza la necessità di una progressiva accrezione ai danni della materia circostante.

Due intriganti conseguenze.

Tale processo è piuttosto rapido al confronto con altri meccanismi e introduce un’intrigante conseguenza: i Smbh si formano prima della galassia e non dopo, come ritenuto in precedenza. Questi oggetti fungerebbero da nuclei di aggregazione per la formazione gerarchica successiva.

Un’altra intrigante conseguenza è che non tutti gli aloni di materia oscura raggiungono la massa critica per collassare in Smbh, conservandosi sotto forma di piccoli aloni, come quelli che sembrano avvolgere le galassie nane, tenendole insieme. Questo è ciò che si osserva in molti sistemi diffusi, dove il nucleo denso di materia oscura produrrebbe effetti gravitazionali simili a quelli di un buco nero supermassicio.

Alcune galassie che non manifestano la presenza di nuclei attivi, come la Via Lattea, potrebbero invece ospitare un nucleo denso di materia oscura in luogo di un Smbh, pur esibendo movimenti stellari del tutto simili.

https://bfcspace.com/2021/02/25/buchi-neri-supermassicci-dalla-materia-oscura/?fbclid=IwAR2k9_Sq8W2Ue53PglIm3anzjYn50tl48hEuJUmNXk782eC6Nm8nNbrBpQE