venerdì 8 marzo 2024

Scoperto nel Delta un sarcofago di 62 tonnellate durante la costruzione di un ospedale. - mattiamancini

 

Un enorme sarcofago in quarzite di 62 tonnellate è stato scoperto durante uno scavo di emergenza nella città di Bahna, capoluogo del governatorato di al-Qalyubiyya nel Delta del Nilo. Nel sito scelto per la costruzione dell’ospedale universitario – un’area di 9000 m² dove sorgeva la vecchia sede della facoltà di Giurisprudenza – è infatti stata individuata una necropoli di Epoca Tarda e si è quindi reso necessario l’intervento degli archeologi del Supreme Council of Antiquities e dei restauratori del Grand Egyptian Museum.

Grazie alle iscrizioni geroglifiche incise sulla pietra, si è capito che la sepoltura appartenesse al Sovrintendente agli scribi sotto il regno di Psammetico I (664-610 a.C.) nella XXVI dinastia. Il pesante sarcofago e altri reperti, dopo alcuni lavori preliminari di pulizia e consolidamento, sono stati trasferiti dei depositi delle antichità di Qayubiyya, mentre proseguiranno le indagini archeologiche nell’area.


https://djedmedu.wordpress.com/2024/03/04/scoperto-nel-delta-un-sarcofago-di-62-tonnellate-durante-la-costruzione-di-un-ospedale/

giovedì 7 marzo 2024

La Città Degli Dei Vecchia di 200 Mila Anni! L'incredibile scoperta!

Dinosauri: sconvolgente rivelazione, ecco in quanto tempo si sono estinti. - Valerio Novara

 

Man mano che la luce del Sole si affievoliva, piante e animali morivano. Ecco come l’oscurità causata dall’asteroide che estinse i dinosauri spazzò via la vita sulla Terra.

Gli anni successivi all’impatto dell’asteroide che spazzò via i dinosauri non volatili furono tempi bui, letteralmente. Secondo una nuova ricerca la fuliggine dei violenti incendi riempì il cielo, bloccando la luce del Sole. Questo meccanismo contribuì in maniera significativa all’ondata di estinzioni che ne seguì. Ecco cosa accadde.

La più grande estinzione di massa della storia.

Il cataclisma che si verificò in seguito all’impatto dell’asteroide estinse molte forme di vita, 66 milioni di anni fa. Un impatto che portò anche cambiamenti ambientali che scatenarono estinzioni di massa, negli anni successivi. Uno dei fattori scatenanti potrebbe essere stato l’addensarsi di nubi di cenere e particelle nocive che si diffusero nell’atmosfera e che ci sarebbero rimaste per ben due anni. Questo fenomeno, oltre ad impedire la fotosintesi, portò all’intero collasso dell’ecosistema terrestre. E anche dopo il ritorno della luce solare, il declino non si fermò.

L’asteroide che colpì la Terra viaggiava circa a 43mila chilometri orari, misurava circa 12 chilometri di diametro e lasciò una cicatrice profonda, sul nostro pianeta, nota come cratere Chicxulub, che si trova nell’odierno Yucatán, in Messico. L’impatto spense almeno il 75% della vita sulla Terra, compresi tutti i dinosauri non volatili. Nuvole di roccia polverizzata oscurarono i cieli e l’acido solforico causò piogge acide e incendi. Una sorta di inverno nucleare post-apocalittico, con la differenza che a quei tempi non c’era l’uomo, né le armi di distruzione di massa.

Tanti fossili analizzati.

Gli scienziati hanno analizzato una lunga serie di fossili, scoprendo che il periodo di oscurità sarebbe durato fino a 150 giorni. Durante questo lasso di tempo, i livelli di estinzione avrebbero raggiunto il 65-81% e ci vollero altri 40 anni prima che le condizioni climatiche e ambientali iniziassero a riprendersi.

https://www.passioneastronomia.it/dinosauri-sconvolgente-rivelazione-ecco-in-quanto-tempo-si-sono-estinti/?fbclid=IwAR3Qj0h1tIcVwLOD9AKj5zqbJ95fY7eOuIwRaHy0SW3tWZs2DPk40KRZaew

Eroe?

L'uomo che viene chiamato alle armi, va in battaglia, uccide tanti uomini, che non conosce nemmeno, in nome di un principio opinabile dettato da chi comanda e, quando torna illeso in patria, viene definito "EROE"...

C'è QUALCOSA CHE NON MI QUADRA...

Per me è un'antitesi! Inconcepibile!

cetta

Le misteriose Bolle di Fermi. - Massimo Zito

Dieci anni fa, il telescopio spaziale per raggi gamma Fermi (Fermi Gamma-ray Large Area Space Telescope, Glast) della Nasa ha scoperto una coppia di giganteschi lobi di radiazione gamma, al centro della nostra galassia che si estendono per 50mila anni luce, 25mila anni luce sopra e 25mila anni luce sotto il disco galattico. Queste strutture sono state chiamate bolle di Fermi.

Le bolle di Fermi sono struttre scoperte oltre dieci anni fa dal telescopio spaziale per raggi gamma Fermi (Fermi Gamma-ray Large Area Space Telescope, Glast) della Nasa. Sono una coppia di giganteschi lobi di radiazione gamma, al centro della nostra galassia che si estendono per 50mila anni luce, 25mila anni luce sopra e 25mila anni luce sotto il disco galattico.

Questi lobi a forma di clessidra sono stati chiamati Bolle di Fermi.

Quando furono scoperte le bolle di Fermi nessuno ne aveva capito l’origine, tuttavia in uno studio pubblicato su The Astrophysical Journal due ricercatori cinesi dell’Osservatorio astronomico di Shanghai (Shao) dell’Accademia cinese delle scienze hanno proposto un nuovo modello che spiega sia l’origine delle bolle di Fermi che l’origine della struttura biconica a raggi X presente nel centro della Via Lattea, concludendo che sono lo stesso fenomeno, originato da onde d’urto generate da una coppia di getti provenienti da Sagittarius A*, il gigantesco buco nero supermassiccio al centro della nostra galassia.

Le bolle sono due enormi lobi colmi di gas incandescente, raggi cosmici e campi magnetici. Sebbene invisibili a occhio nudo, sono molto luminose nello spettro dei raggi gamma, dove presentano bordi netti che coincidono con una struttura biconica evidente nella parte a raggi X dello spettro.

L’origine delle bolle di Fermi.

I ricercatori Guo Fulai e Zhang Ruiyu pensano che questa corrispondenza tra le due strutture possano avere la stessa origine. Inoltre, la struttura biconica a raggi X potrebbe essere spiegata dal guscio sottile dell’onda d’urto del gas incandescente, generata da un’esplosione di energia avvenuta 6 milioni di anni fa dal buco nero super massiccio centrale della nostra galassia, noto anche come Sagittario A * (o Sgr A *).

L’onda d’urto potrebbe essere iniziata quando il buco nero ha improvvisamente emesso due enormi getti di materia ionizzata in direzioni opposte lontano dal centro galattico a una velocità prossima a quella della luce

I ricercatori hanno spiegato che se i getti fossero stati abbastanza larghi e abbastanza potenti, avrebbero potuto creare due onde d’urto gemelle che spostandosi attraverso il gas su entrambi i lati del centro galattico lo avrebbero compresso e riscaldato, formando cosi le strutture a raggi X a forma di clessidra; i bordi delle onde d’urto, espandendosi nello spazio intergalattico per migliaia di anni luce in entrambe le direzioni, avrebbero originato le Bolle di Fermi. L’intero processo sarebbe durato circa un milione di anni.

Il modello di Fulai e Ruiyu indica che l’energia totale emessa dal buco nero super massiccio, durante la generazione dell’evento è paragonabile a quella rilasciata da circa 20mila supernove. La materia totale consumata da Sgr A* durante questo evento è circa 100 volte la massa del nostro Sole.

Guo fa notare che la struttura biconica a raggi X ha una base molto stretta, questo esclude che il fronte d’onda sia stato prodotto da formazione stellare. Al contrario, i getti collimati depositano rapidamente la maggior parte dell’energia a grandi distanze lungo la direzione del getto, portando naturalmente ad avere un fronte d’urto vicino al piano galattico molto stretto.

Secondo i due ricercatori cinesi, l’ipotesi delle onde d’urto spiega le temperature estremamente elevate delle bolle di Fermi e il fatto che i bordi inferiori delle bolle si sovrappongono perfettamente con le strutture a raggi X.

Secondo i due ricercatori, inoltre, se un evento, simile ma meno potente, di onde d’urto si fosse verificato qualche milione di anni dopo, potrebbe spiegare le strutture radio più piccole a forma di bolla osservate di recente nel centro galattico.

Secondo Guo, lo studio suggerisce con forza che circa cinque milioni di anni fa una coppia di potenti getti è stata emessa dal buco nero super massiccio per un periodo di un milione di anni e che questo rilascio abbia portato alla formazione delle gigantesche bolle di Fermi, che oggi ammiriamo.

https://reccom.org/le-misteriose-bolle-di-fermi/

lunedì 4 marzo 2024

LA BATTERIA PARTICA: UNA MERAVIGLIA DI 2000 ANNI.

 

La batteria "partica" (meglio nota come "LA BATTERIA DI BAGDAD") è stata scoperta nel 1936 vicino a Baghdad ed ha incuriosito sia studiosi che storici, offrendo uno sguardo sulla possibilità di antichi esperimenti elettrici. Si stima che abbia circa 2.000 anni, il vaso di argilla riempito con una soluzione di aceto, che ospita un'asta di ferro racchiusa da un cilindro di rame, suggerisce capacità elettrochimiche, generando circa 1,1-2,0 volt di elettricità quando riempito con un elettrolita.
Nonostante la mancanza di documenti scritti che descrivano in dettaglio l'esatta funzione di questi vasi, alcuni studiosi ritengono che fossero usati come batterie, potenzialmente per scopi galvanici, mentre altri rimangono scettici. La distruzione delle fonti letterarie e delle biblioteche iraniane da parte degli arabi nel VII secolo d.C. ha ulteriormente complicato gli sforzi per scoprire il vero scopo di questi manufatti.
La scoperta sfida le teorie convenzionali, suggerendo che il concetto di batteria potrebbe esistere molto prima dell'invenzione della batteria moderna da parte del famoso scienziato Alessandro Volta. Se la Batteria Partica funzionasse davvero come una batteria, sarebbe anteriore all'invenzione di Volta di oltre un millennio, rimodellando la nostra comprensione delle antiche capacità tecnologiche.
Nel contesto più ampio dello sviluppo dell’elettricità e dell’energia, la scoperta della Batteria Partica aggiunge un altro livello alla cronologia del fascino umano e della sperimentazione con l’elettricità. Dalla registrazione dei pesci elettrici da parte degli antichi egizi alla scoperta dell'elettricità statica da parte di Talete di Mileto, ogni pietra miliare contribuisce alla nostra comprensione in evoluzione di questa forza fondamentale della natura.

sabato 2 marzo 2024

Una spiegazione semplice dell’entanglement quantistico. - Elena Buratin

 

L'entanglement, o correlazione quantistica, è un legame fra due o più particelle che hanno proprietà correlate.

L'entanglement, anche chiamato correlazione quantistica, è un legame fra due o più particelle che hanno proprietà correlate, chiamate stati quantici. Ma che cos'è esattamente l'entanglement? A che scala si manifesta? Chi lo ha teorizzato? Scopriamolo insieme!

Alcune nozioni base.

La meccanica classica, quella di Newton per intenderci, descrive le proprietà e il comportamento della materia a grande scala. La meccanica quantistica, invece, descrive  il comportamento microscopico di singole particelle che si comportano in modo contro-intuitivo, diversamente da come ci verrebbe spontaneo pensare. L'aggettivo "quantistico" deriva dal termine latino "quantum" riferito alla quantità che identifica il più piccolo pacchetto indivisibile di una certa grandezza.

Cos'è l'entanglement?

"Entanglement" (in inglese, "groviglio", "intreccio") è un termine coniato da Erwin Schrödinger nel 1935 e in meccanica quantistica indica un legame fra particelle. È definito da una funzione, chiamata funzione d'onda di un sistema, che descrive le proprietà delle particelle come fossero un unico oggetto, anche se le particelle si trovano ad enorme distanza. Questa correlazione permette alla prima particella di influenzare la seconda istantaneamente, e viceversa.

Ma non tutte le particelle sono "entangled", ovvero aggrovigliate. Affinché questa correlazione abbia luogo, cioè per far sì che le due particelle abbiano stati quantici correlati, queste due particelle devono essere prodotte simultaneamente da un'interazione fisica. Un tipico esempio di stato quantico è lo spin di una particella. Esso può assumere valore positivo o negativo. Quando abbiamo a che fare con particelle "entangled", quindi unite nel legame, la somma degli spin delle due particelle è pari a zero. Dunque se si misura lo spin di una delle due, automaticamente ed istantaneamente si conoscerà anche lo spin dell'altra.

È un po' come prendere un paio di guanti e di chiuderli separatamente in due scatole diverse. Se aprendo la prima scatola trovate il guanto destro, saprete immediatamente che nella seconda scatola c'è quello sinistro.

Ma com'è fatta la realtà quando nessuno la guarda? Gli spin delle due particelle sono definiti già in partenza o si materializzano solo nel momento dell'osservazione?

Diversi punti di vista.

Una prima corrente di pensiero fu capitanata da Niels Bohr, grande sostenitore della meccanica quantistica. Questa corrente riteneva che le particelle nascessero quando osservate e che solo la loro funzione onda del sistema fosse reale prima dell'osservazione.

Albert Einstein, Boris Podolsky e Nathan Rosen, invece, erano convinti che le particelle nascessero già con le loro caratteristiche (realismo locale), in quanto la relatività aveva dimostrato che nessuna informazione poteva trasmettersi istantaneamente, viaggiando più veloce della luce.

Questo fenomeno istantaneo, l'entanglement, doveva quindi essere legato a delle variabili nascoste, a noi sconosciute, le quali definiscono lo spin delle particelle prima ancora di effettuare l'osservazione.

Questi scienziati definirono la meccanica quantistica incompleta e mossero le loro critiche nel famoso paradosso EPR, acronimo derivato dalle loro iniziali.

Verifica sperimentale.

Nel 1964 John Bell identificò un metodo basato sulle probabilità, chiamato teorema di Bell, per capire se lo stato quantico delle due particelle entangled fosse definito fin dall'inizio (seguendo l'idea di Einstein, Podolsky e Rosen) o se si manifestasse solo a conseguenza dell'osservazione (come nell'ipotesi di Bohr).

A causa di difficoltà tecnologiche si dovette aspettare fino al 1982, quando Alain Aspect misurò il comportamento di fotoni entangled e validò la teoria di Bohr. Einstein aveva quindi torto.

Fintantoché le due particelle non vengono osservate, i loro spin rimangono indefiniti, ovvero entrambe le particelle hanno al tempo stesso spin positivo e negativo, secondo il principio di sovrapposizione degli stati. È la sola presenza dell'osservatore ad interferire con il sistema e a calarlo nella "realtà".

Conoscenza istantanea.

L'entanglement permette di conoscere istantaneamente il comportamento della seconda particella, non per via di un trasferimento di informazioni più rapido della luce, ma perché le due particelle sono di fatto un unico sistema governato da una sola funzione d'onda.

Una perturbazione esterna locale, come l'arrivo di un fotone o di un osservatore, non altera solo il comportamento della prima particella, ma influenza tutto il sistema, e di conseguenza definisce lo stato quantistico anche della seconda.

Una piccola precisazione finale. L'esempio dei guanti, utile per comprendere il fenomeno, non calza più perfettamente. Il guanto destro e quello sinistro, infatti, sono definiti fin dall'inizio, mentre lo stato quantico delle particelle non lo è. È un'interferenza esterna a definirne lo stato.

continua su: https://www.geopop.it/una-spiegazione-semplice-dellentanglement-quantistico/

https://www.geopop.it/